1Department of Neurology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Republic of Korea
2Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
© 2025 The Korean Headache Society
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
AVAILABILITY OF DATA AND MATERIAL
The data presented in this study are available upon reasonable request from the corresponding author.
AUTHOR CONTRIBUTIONS
Conceptualization: WL, MKC; Data curation: WL, MKC; Formal analysis: WL, MKC; Investigation: WL, MKC; Methodology: WL; Writing–original draft: WL; Writing–review & editing: WL, MKC.
CONFLICT OF INTEREST
Wonwoo Lee was involved as a site investigator in a multicenter trial sponsored by Eli Lilly and Co., WhanIn Pharm Co. Ltd., and Handok-Teva. He has received lecture honoraria from Abbott and SK chemical in the past 24 months. Min Kyung Chu was a site investigator for a multicenter trial sponsored by Allergan Korea, Biohaven Pharmaceuticals, and Lundbeck Korea. He has received lecture honoraria from Allergan Korea, Handok-Teva, Eli Lilly and Company, and Yuyu Pharmaceutical Company in the past 24 months. Additionally, he received grants from Yonsei University College of Medicine (6-2021-0229), the Korea Health Industry Development Institute (KHIDI) (HV22C0106), and National Research Foundation of Korea (2022R1A2C1091767).
FUNDING STATEMENT
Not applicable.
ACKNOWLEDGMENTS
Grammatical error revision was supported by ChatGPT-4o.
Purpose | Data source | Study | Year | AI method | AI method specification |
---|---|---|---|---|---|
Diagnosis | |||||
Questionnaire | Kwon et al.13 | 2020 | ML | Stacked classifier model with four layers of XGBoost classifiers, LASSO | |
Questionnaire | Liu et al.6 | 2022 | ML | RF, GB, LR, SVM | |
Questionnaire/NL | Katsuki et al.14 | 2020 | DL | NLP, ANN | |
Questionnaire | Simić et al.7 | 2021 | Hybrid system | Calinski-Harabasz index, Analytical Hierarchy Process, and Weighted Fuzzy C-means Clustering algorithm (ML) | |
Questionnaire | Katsuki et al.10 | 2023 | ML | GB, LR, Ridge Classifier, RF, Extra Trees Classifier, K Neighbors Classifier, Dummy Classifier, DT, SVM, AdaBoost Classifier, LDA, Naïve Bayes, QDA, best performance: GB | |
Questionnaire | Katsuki et al.8 | 2023 | ML | Light GB machine, RF, LDA, Ridge Classifier, Extra Trees, GB Classifier, LR, AdaBoost Classifier, DT, K Neighbors, Naïve Bayes, Dummy Classifier, SVM, QDA, best performance: light GB machine classifier | |
Questionnaire | Sasaki et al.12 | 2023 | ML | Light GB machine, RF, LDA, Ridge Classifier, Extra Trees, GB Classifier, LR, Ada Boost Classifier, DT K Neighbors, Naïve Bayes, Dummy Classifier, SVM, QDA, best performance: extremely randomized trees | |
Questionnaire | Okada et al.11 | 2024 | ML | Light GB machine classifier | |
NL | Vandenbussche et al.20 | 2022 | NLP/ML | NLP, LR, SVM | |
NL (EHR) | Riskin et al.19 | 2023 | NLP/ML | Not specified | |
Questionnaire/MRI | Chong et al.23 | 2021 | ML | PCA, logistic classifier | |
Clinical data/MRI | Dumkrieger et al.24 | 2023 | ML | Ridge LR on principal component | |
MRI | Rahman Siddiquee et al.25 | 2022 | DL | ResNet-18 | |
MRI | Mitrović et al.21 | 2023 | ML | LDA | |
MRI | Mitrović et al.22 | 2023 | ML | SVM | |
Resting-state fMRI | Chong et al.29 | 2017 | ML | Diagonal QDA | |
Resting-state fMRI | Yang et al.31 | 2018 | ML, DL | SVM, CNN | |
Resting-state fMRI | Tu et al.26 | 2020 | ML | Recursive feature elimination, SVM, LOOCV | |
Resting-state fMRI | Nie et al.27,28 | 2021;2023 | ML | K-means clustering, hierarchical clustering, SVM | |
Resting-state fMRI | Fernandes et al.30 | 2024 | ML | Gaussian Process Classifier | |
MEG | Hsiao et al.32 | 2022 | ML | SVM | |
MEG | Hsiao et al.33 | 2023 | ML | DT, discriminant analysis, naïve Bayes classifiers, SVM, KNN | |
EEG | Akben et al.39 | 2012 | ML | MLP | |
EEG (wearable) | Cao et al.40 | 2018 | ML | LDA, KNN, MLP, Bayesian classifier, SVM | |
EEG | Frid et al.37 | 2020 | ML | Relif Family algorithm, SVM | |
EEG | Aslan38 | 2021 | ML | Rotation Forest, BFTree, RF, Bagging, AdaBoost, SPAARC, MultiBoost, Random Tree, NBTree ensemble classifiers | |
EEG | Hsiao et al.35 | 2023 | ML | DT, discriminant analysis, naïve Bayes classifiers, SVM, KNN | |
EEG | Orhanbulucu et al.36 | 2023 | DL | AlexNet, ResNet50, SqueezeNet | |
SEP | Zhu et al.42 | 2019 | ML, DL | RF, XGBoost trees, SVM, KNN, MLP, LDA, LR, CNN | |
ECG | Chiang et al.41 | 2022 | DL | CNN | |
Headache diary application/wearable device | De Brouwer et al.43 | 2022 | ML | Knowledge-based classification, ML-based detection of activity, stress, sleep events | |
Functional near-infrared spectroscopy | Chen et al.44 | 2022 | ML | LDA, QDA | |
Treatment efficacy/response | |||||
Web-based survey | Ashina et al.47 | 2024 | ML | RF, LASSO | |
NL (EHR) | Hindiyeh et al.48 | 2022 | NLP | Not specified | |
NL (social media) | Guo et al.49 | 2023 | NLP | Transformer-based models | |
NL (EHR) | Chiang et al.50 | 2024 | NLP framework | ClinicalBERT regression model, GPT-2 Question Answering model zero-shot, GPT-2 QA model few-shot training fine-tuned on clinical notes, GPT-2 generative model few-shot training fine-tuned on clinical notes | |
NL (generative LLM) | Moskatel and Zhang52 | 2023 | LLMs | ChatGPT-3.5 | |
NL (generative LLM) | Li et al.51 | 2024 | LLMs | ChatGPT-3.5, ChatGPT-4.0, Google Bard, Meta Llama2, and Anthropic Claude2 | |
Clinical dataset | Ferroni et al.57 | 2020 | ML | SVM, random optimization | |
Clinical dataset | Lu et al.53 | 2022 | ML | SVM, DT, MLP | |
Clinical dataset | Gonzalez-Martinez et al.55 | 2022 | ML | RF, Bayesian search optimization method | |
Clinical dataset | Stubberud et al.56 | 2022 | ML, NLP | Multitask Gaussian process model, NLP | |
Clinical dataset | Ciancarelli et al.58 | 2022 | Neural network | ANN | |
Clinical dataset | Martinelli et al.54 | 2023 | ML, neural network | RF, SVM, ANN, adaptive neuro-fuzzy inference system, fuzzy c-means clustering | |
Clinical dataset/MRI | Tso et al.62 | 2021 | ML | PCA, t-distributed stochastic neighbor embedding, KNN, XGBoost implemented GB DT | |
MRI, fMRI | Wei et al.59 | 2023 | DL, ML | ResNet34, ResNet50, RexNeXt50, DenseNet121, 3D ResNet18,, best performance: ResNet-18 /SVM | |
Multimodal MRI | Wei et al.60 | 2024 | ML | LASSO, LR, SVM-recursive feature elimination for Feature selection / LR, SVM, RF, DT, KNN, MLP elastic network, light GB machine, XGBoost for classification, best performance: RF | |
PET | Marino et al.61 | 2023 | ML | CBDA | |
Migraine attack prediction | |||||
Wearable device | Siirtola et al.65 | 2018 | ML | QDA, LDA | |
Headache diary application/wearable device | Stubberud et al.64 | 2023 | ML | LR, SVM, RF, GB, Adaptive boosting, XGBoost, best performance: RF | |
Headache diary application/weather data | Katsuki et al.9 | 2023 | ML, neural network | Generalized linear mixed model, feedforward neural network, XGBoost | |
Research | |||||
Cortical-evoked potentials in response to repetitive visual/auditory stimulus | Thomas et al.68 | 2002 | Neural network | Neural network model | |
Mouse grimace scale | Chiang et al.67 | 2022 | DL | ResNet-18 | |
Temporal multi-omics profile | Kogelman et al.66 | 2023 | ML | Qlattice |
AI, artificial intelligence; ML, machine learning; XGBoost, extreme gradient boosting; LASSO, least absolute shrinkage and selection operator; RF, random forest; GB, gradient boosting; LR, logistic regression; SVM, support vector machine; NL, natural language; DL, deep learning; NLP, natural language processing; ANN, artificial neural network; DT, decision tree; LDA, linear discriminant analysis; QDA, quadratic discriminant analysis; EHR, electronic health records; MRI, magnetic resonance imaging; PCA, principal component analysis; fMRI, functional MRI; CNN, convolutional neural network; LOOCV, leave-one-out cross-validation; MEG, magnetoencephalography; KNN, K-nearest neighbor; EEG, electroencephalography; MLP, multilayer perceptron; BFTree, best first decision tree; SPAARC, sequential pattern-aided adaptive response classification; NBTree, naïve Bayes decision tree; SEP, somatosensory evoked potentials; ECG, electrocardiogram; ClinicalBERT, clinical bidirectional encoder representations from transformers; GPT, generative pre-trained transformer; LLMs, large language models; PET, positron emission tomography; CBDA, Compressive Big Data Analytics.
Purpose | Data source | Study | Year | AI method | AI method specification |
---|---|---|---|---|---|
Diagnosis | |||||
Questionnaire | Kwon et al.13 | 2020 | ML | Stacked classifier model with four layers of XGBoost classifiers, LASSO | |
Questionnaire | Liu et al.6 | 2022 | ML | RF, GB, LR, SVM | |
Questionnaire/NL | Katsuki et al.14 | 2020 | DL | NLP, ANN | |
Questionnaire | Simić et al.7 | 2021 | Hybrid system | Calinski-Harabasz index, Analytical Hierarchy Process, and Weighted Fuzzy C-means Clustering algorithm (ML) | |
Questionnaire | Katsuki et al.10 | 2023 | ML | GB, LR, Ridge Classifier, RF, Extra Trees Classifier, K Neighbors Classifier, Dummy Classifier, DT, SVM, AdaBoost Classifier, LDA, Naïve Bayes, QDA, best performance: GB | |
Questionnaire | Katsuki et al.8 | 2023 | ML | Light GB machine, RF, LDA, Ridge Classifier, Extra Trees, GB Classifier, LR, AdaBoost Classifier, DT, K Neighbors, Naïve Bayes, Dummy Classifier, SVM, QDA, best performance: light GB machine classifier | |
Questionnaire | Sasaki et al.12 | 2023 | ML | Light GB machine, RF, LDA, Ridge Classifier, Extra Trees, GB Classifier, LR, Ada Boost Classifier, DT K Neighbors, Naïve Bayes, Dummy Classifier, SVM, QDA, best performance: extremely randomized trees | |
Questionnaire | Okada et al.11 | 2024 | ML | Light GB machine classifier | |
NL | Vandenbussche et al.20 | 2022 | NLP/ML | NLP, LR, SVM | |
NL (EHR) | Riskin et al.19 | 2023 | NLP/ML | Not specified | |
Questionnaire/MRI | Chong et al.23 | 2021 | ML | PCA, logistic classifier | |
Clinical data/MRI | Dumkrieger et al.24 | 2023 | ML | Ridge LR on principal component | |
MRI | Rahman Siddiquee et al.25 | 2022 | DL | ResNet-18 | |
MRI | Mitrović et al.21 | 2023 | ML | LDA | |
MRI | Mitrović et al.22 | 2023 | ML | SVM | |
Resting-state fMRI | Chong et al.29 | 2017 | ML | Diagonal QDA | |
Resting-state fMRI | Yang et al.31 | 2018 | ML, DL | SVM, CNN | |
Resting-state fMRI | Tu et al.26 | 2020 | ML | Recursive feature elimination, SVM, LOOCV | |
Resting-state fMRI | Nie et al.27,28 | 2021;2023 | ML | K-means clustering, hierarchical clustering, SVM | |
Resting-state fMRI | Fernandes et al.30 | 2024 | ML | Gaussian Process Classifier | |
MEG | Hsiao et al.32 | 2022 | ML | SVM | |
MEG | Hsiao et al.33 | 2023 | ML | DT, discriminant analysis, naïve Bayes classifiers, SVM, KNN | |
EEG | Akben et al.39 | 2012 | ML | MLP | |
EEG (wearable) | Cao et al.40 | 2018 | ML | LDA, KNN, MLP, Bayesian classifier, SVM | |
EEG | Frid et al.37 | 2020 | ML | Relif Family algorithm, SVM | |
EEG | Aslan38 | 2021 | ML | Rotation Forest, BFTree, RF, Bagging, AdaBoost, SPAARC, MultiBoost, Random Tree, NBTree ensemble classifiers | |
EEG | Hsiao et al.35 | 2023 | ML | DT, discriminant analysis, naïve Bayes classifiers, SVM, KNN | |
EEG | Orhanbulucu et al.36 | 2023 | DL | AlexNet, ResNet50, SqueezeNet | |
SEP | Zhu et al.42 | 2019 | ML, DL | RF, XGBoost trees, SVM, KNN, MLP, LDA, LR, CNN | |
ECG | Chiang et al.41 | 2022 | DL | CNN | |
Headache diary application/wearable device | De Brouwer et al.43 | 2022 | ML | Knowledge-based classification, ML-based detection of activity, stress, sleep events | |
Functional near-infrared spectroscopy | Chen et al.44 | 2022 | ML | LDA, QDA | |
Treatment efficacy/response | |||||
Web-based survey | Ashina et al.47 | 2024 | ML | RF, LASSO | |
NL (EHR) | Hindiyeh et al.48 | 2022 | NLP | Not specified | |
NL (social media) | Guo et al.49 | 2023 | NLP | Transformer-based models | |
NL (EHR) | Chiang et al.50 | 2024 | NLP framework | ClinicalBERT regression model, GPT-2 Question Answering model zero-shot, GPT-2 QA model few-shot training fine-tuned on clinical notes, GPT-2 generative model few-shot training fine-tuned on clinical notes | |
NL (generative LLM) | Moskatel and Zhang52 | 2023 | LLMs | ChatGPT-3.5 | |
NL (generative LLM) | Li et al.51 | 2024 | LLMs | ChatGPT-3.5, ChatGPT-4.0, Google Bard, Meta Llama2, and Anthropic Claude2 | |
Clinical dataset | Ferroni et al.57 | 2020 | ML | SVM, random optimization | |
Clinical dataset | Lu et al.53 | 2022 | ML | SVM, DT, MLP | |
Clinical dataset | Gonzalez-Martinez et al.55 | 2022 | ML | RF, Bayesian search optimization method | |
Clinical dataset | Stubberud et al.56 | 2022 | ML, NLP | Multitask Gaussian process model, NLP | |
Clinical dataset | Ciancarelli et al.58 | 2022 | Neural network | ANN | |
Clinical dataset | Martinelli et al.54 | 2023 | ML, neural network | RF, SVM, ANN, adaptive neuro-fuzzy inference system, fuzzy c-means clustering | |
Clinical dataset/MRI | Tso et al.62 | 2021 | ML | PCA, t-distributed stochastic neighbor embedding, KNN, XGBoost implemented GB DT | |
MRI, fMRI | Wei et al.59 | 2023 | DL, ML | ResNet34, ResNet50, RexNeXt50, DenseNet121, 3D ResNet18,, best performance: ResNet-18 /SVM | |
Multimodal MRI | Wei et al.60 | 2024 | ML | LASSO, LR, SVM-recursive feature elimination for Feature selection / LR, SVM, RF, DT, KNN, MLP elastic network, light GB machine, XGBoost for classification, best performance: RF | |
PET | Marino et al.61 | 2023 | ML | CBDA | |
Migraine attack prediction | |||||
Wearable device | Siirtola et al.65 | 2018 | ML | QDA, LDA | |
Headache diary application/wearable device | Stubberud et al.64 | 2023 | ML | LR, SVM, RF, GB, Adaptive boosting, XGBoost, best performance: RF | |
Headache diary application/weather data | Katsuki et al.9 | 2023 | ML, neural network | Generalized linear mixed model, feedforward neural network, XGBoost | |
Research | |||||
Cortical-evoked potentials in response to repetitive visual/auditory stimulus | Thomas et al.68 | 2002 | Neural network | Neural network model | |
Mouse grimace scale | Chiang et al.67 | 2022 | DL | ResNet-18 | |
Temporal multi-omics profile | Kogelman et al.66 | 2023 | ML | Qlattice |
AI, artificial intelligence; ML, machine learning; XGBoost, extreme gradient boosting; LASSO, least absolute shrinkage and selection operator; RF, random forest; GB, gradient boosting; LR, logistic regression; SVM, support vector machine; NL, natural language; DL, deep learning; NLP, natural language processing; ANN, artificial neural network; DT, decision tree; LDA, linear discriminant analysis; QDA, quadratic discriminant analysis; EHR, electronic health records; MRI, magnetic resonance imaging; PCA, principal component analysis; fMRI, functional MRI; CNN, convolutional neural network; LOOCV, leave-one-out cross-validation; MEG, magnetoencephalography; KNN, K-nearest neighbor; EEG, electroencephalography; MLP, multilayer perceptron; BFTree, best first decision tree; SPAARC, sequential pattern-aided adaptive response classification; NBTree, naïve Bayes decision tree; SEP, somatosensory evoked potentials; ECG, electrocardiogram; ClinicalBERT, clinical bidirectional encoder representations from transformers; GPT, generative pre-trained transformer; LLMs, large language models; PET, positron emission tomography; CBDA, Compressive Big Data Analytics.